Chem. Ber. 105, 820-823 (1972)

Alois Haas, Walter Klug und Heinrich Marsmann

Zur Chemie der F-C-S-Verbindungen, IV¹⁾

Darstellung und Eigenschaften einiger komplexer F₃CS-substituierter Perhalogendimethyldisulfane

Aus dem Lehrstuhl^Tfür Anorganische Chemie II der Ruhr-Universität Bochum

(Eingegangen am 19. Oktober 1971)

.

Die photochemische Reaktion von Thiocarbonylverbindungen des Typs RC(S)F (R = CI, F, CF₃S-) mit den Sulfensäurechloriden F₃CS-CCIF-SCI, F₃CS-CCI₂-SCI und (F₃C)₂CCI-SCI führt zu den Disulfanen der Tab. 1. IR-, ¹³C- und ¹⁹F-NMR-Daten werden angegeben.

Chemistry of F-C-S Compounds, IV¹⁾

Preparation and Properties of Some Complex F3CS-substituted Perhalodimethyldisulfanes

The photochemical reaction of the thiocarbonyl compounds RC(S)F (R = Cl, F, CF₃S-) with the sulphenylchlorides $F_3CS-CClF-SCl$, $F_3CS-CCl_2-SCl$, and $(F_3C)_2CCl-SCl$ leads to the formation of the disulfanes in table 1. I. r., ¹³C-, and ¹⁹F n. m. r. data are given.

In einer früheren Arbeit²⁾ berichteten wir über eine allgemeine Methode zur Darstellung perhalogenierter Dimethyldisulfane durch Photolyse von Gemischen bestehend aus Sulfenylhalogeniden des Typs $Cl_{3-n}F_nCSCl$ bzw. $F_2BrCSBr$ und mit den Thiocarbonylverbindungen SCF₂ und SCFCl. Auf gleiche Weise lassen sich CF₃Sbzw. CF₃-substituierte Dimethyldisulfane synthetisieren, wenn die Sulfenylhalogenide $F_3CS-CClF-SCl$, $F_3CS-CCl_2-SCl$ und $(CF_3)_2CCl-SCl$ eingesetzt werden. Die Aucheuten an nerhalogenierten Disulfanen sind in diesem Fall indech deutlich

Die Ausbeuten an perhalogenierten Disulfanen sind in diesem Fall jedoch deutlich geringer als bei Verwendung der Verbindungen $Cl_{3-n}F_nCSCl$.

Diskussion der Kernresonanzspektren

In den Tabellen 1 und 2 sind die NMR-Daten der dargestellten Verbindungen zusammengefaßt.

In der Verbindung $F_3CS-CClF-SSCF_2Cl$ (Nr. 2 in Tab. 1) sind die beiden Fluoratome der CF₂Cl-Gruppe magnetisch nicht äquivalent. Bei -50° beträgt die chemische Verschiebung zwischen den Signalen dieser beiden Fluoratome 0.75 ppm mit einer geminalen Kopplungskonstante von 118 Hz. Ab 140° ist dann nur noch ein Signal für die beiden Fluoratome feststellbar. Dieses Verhalten ist vermutlich auf eine gehin-

III. Mitteil.: A. Haas, H. Reinke und J. Sommerhoff, Angew. Chem. 82, 484 (1970); Angew. Chem. internat. Edit. 9, 466 (1970).

²⁾ A. Haas und W. Klug, Chem. Ber. 101, 2617 (1968).

derte Rotation der CF₂Cl-Gruppe zurückzuführen. Aus der Koaleszenztemperatur kann man nach Literaturangaben³⁾ und der *Eyring*-Formel⁴⁾ eine Höhe der Potentialschwelle von $\Delta G^{\dagger} = 19$ kcal abschätzen.

Nr.	Substanz a b c	δ _a	δь	δ _c	J _{a-b} (Hz)	J _{a-c} (Hz)	J _{b-c} (Hz)
1	F ₃ CS-CCIF-SSC	F ₃ 38.6	45.2	54.9	9.7		8.5
2	F ₃ CS-CClF-SSC	F ₂ Cl 38.7	53.7	31.0/31.5	9.5	0.35	12.1/12.7
3	F ₃ CS-CCIF-SSC	FCl ₂ 39.0	52.5	24.0	9.5	0.32	19.2
4	F ₃ CS-CCl ₂ -SSCF	3 41.1	_	43.5	-	0.62	-
5	F ₃ CS-CCl ₂ -SSCF	2Cl 41.6		29.6		0.85	-
6	F ₃ CS-CCl ₂ -SSCF	Cl ₂ 41.4	-	20.6	-	0.90	
7	(F ₃ C) ₂ CCl-SSCF ₂ C	Cl 71.6	_	33.5	_	2.75	-

Tab. 1. ¹⁹F-NMR-Spektren der dargestellten Disulfane (ppm-Werte, CCl₃F innerer Standard)

Tab. 2. ¹³C-NMR-Daten und ¹³C-¹⁹F-Kopplungen (innerer Standard CS₂, δ-Werte in ppm, J in Hz)

Substanz						
a b c	δ_a	δь	δ _c	J ₁₃ C-F(a)	J_{13} C-F(b)	J_{13} C-F(c)
F ₃ CS-CClF-SSCF ₃	65.18	76.47	65.18	313.9	341.7	313.9
F ₃ CS-CCIF-SSCF ₂ Cl	65.22	76.51	64.47	313.3	340.5	332.6
$F_3CS-CCIF-SSCFCl_2$	65.14	76.36	72.58	313.7	340.9	341.7
$F_3CS-CCl_2-SSCF_3$	65.32	101.03	65.05	313.7	_	316.6
F ₃ CS-CCl ₂ -SSCF ₂ Cl	65.34	100.99	64.35	313.7	_	333.8

Tab. 3. IR-Absorptionen der Verbindungen in Tab. 4

Nr.	Disulfan	IR-Frequenzen in cm ⁻¹
1	F ₃ CS-CCIF-SSCF ₃	1170 (sst), 1114 (sst), 1100 (sst), 1048 (m), 835 (m), 812 (m), 787 (m), 759 (m), 756 (m)
2	F ₃ CS-CCIF-SSCF ₂ Cl	1229 (sh), 1165 (sst), 1109 (sh), 1096 (sst), 1048 (m), 850 (mst), 835 (mst), 803 (st), 790 (sh), 760 (mst), 756 (st), 471 (m), 450 (m)
3	F ₃ CS-CCIF-SSCFCl ₂	1177 (sh), 1165 (sst), 1058 (st), 832 (st), 804 (st), 758 (mst), 473 (s), 423 (s), 416 (s)
4	F ₃ CS-CCl ₂ -SSCF ₃	1166 (sst), 1098 (sst), 818 (m), 804 (m), 777 (m), 759 (mst), 756 (mst), 726 (m), 474 (s), 447 (s), 416 (s), 406 (s)
5	F ₃ CS-CCl ₂ -SSCF ₂ Cl	1163 (sst), 1108 (sh), 1101 (sst), 1075 (sh), 884 (st), 868 (st), 854 (st), 818 (m), 802 (m), 774 (s), 770 (sh), 759 (st), 749 (s), 723 (m)
7	(F ₃ C) ₂ CCl−SSCF ₂ Cl	1308 (m), 1298 (sh), 1262 (sst), 1238 (sst), 1216 (sst), 1167 (mst), 1126 (st), 1117 (st), 1092 (st), 947 (st), 932 (st), 895 (sh), 885 (st), 867 (st), 858 (st), 742 (st), 702 (st), 449 (m)

³⁾ R. J. Kurland, M. B. Ratin und W. B. Wise, J. chem. Physics 40, 2426 (1964).

⁴⁾ G. Glastone, K. J. Laidling und H. Eyring, The Theory of the Rate Processes, Mc Graw Hill, New York 1941.

))	•			
Nr.	Dargestelltes Disulfan	Einwaage g (in Mol) Thiocarbonylverb.	Sulfen- säurechlorid	Reakt Zeit (Stdn.)	Disulfan Sdp./Torr (% Ausb.)	Summen- formel (MolGew.)	Analysen C Cl F S	
1	F ₃ CS – CCIF – SSCF ₃	18.85 g F ₃ CSC(S)F (114.8 mMol)	17.10 g CF ₃ SCI (125.3 mMol)	24	133.5°/745 (29)	C ₃ CIF ₇ S ₃ (300.7)	Ber. 11.98 11.79 44.24 31.99 Gef. 12.43 11.96 43.4 32.18	18
7	F ₃ CS-CCIF-SSCF ₂ CI	7.2 g F ₂ CS (87.7 mMol)	11.9 g F ₃ CS-CCIFSCI (50.6 mMol)	16	63°/12 (33)	C ₃ Cl ₂ F ₆ S ₃ (317.1)	Ber. 11.36 22.36 35.95 30.33 Gef. 11.81 22.88 36.0 29.74	44
3	F ₃ CS-CCIF-SSCFCl ₂	15.04 g FCICS (152.7 mMol)	32.43 g F ₃ CS-CCIFSCI (138.0 mMol)	22	108°/27 (60.5)	C ₃ Cl ₃ F ₅ S ₃ (333.6)	Ber. 10.80 31.88 28.48 28.8: Gef. 11.11 32.20 28.20 29.0	6 6
4	F ₃ CS-CCl ₂ -SSCF ₃	9.3 g F ₃ CSC(S)Cl (51.5 mMol)	7.5 g CF ₃ SCl (54.9 mMol)	24	39°/0.1 (24)	C ₃ Cl ₂ F ₆ S ₃ (317.1)	Ber. 11.36 22.36 35.95 30.33 Gef. 11.67 23.41 35.10 29.82	33
Ś	F ₃ CS-CCl ₂ -SSCF ₂ CI	9.85 g F ₂ CS (120.0 mMol)	27.74 g F ₃ CS-CCl ₂ SCl (110.3 mMol)	11	61°/3 (32.6)	C ₃ Cl ₃ F ₅ S ₃ (333.6)	Ber. 10.80 31.88 28.48 28.8 Gef. 10.95 32.10 – –	8 .
9	F ₃ CS-CCl ₂ -SSCFCl ₂ *)	6.2 g FClCS (62.9 mMol)	12.1 g F ₃ CS – CCl ₂ SCl (48.1 mMol)	62	l	C ₃ Cl4F4S ₃ (350.0)	Ber	
٢	(F ₃ C) ₂ CCI-SSCF ₂ CI	3.28 g F ₂ CS (40 mMol)	6.05 g (F ₃ C) ₂ CCISCI (23.9 mMol)	6	~30°/10 (~25 %)	C4Cl2F8S2 (335.1)	Ber. 14.34 21.16 – – Gef. 14.72 20.91 – –	
(;								

Tab. 4. Einwaagen, Reaktionsbedingungen und Analysen^{a)}

Die Verbindung wurde nicht völlig rein erhalten.
Die hier aufgeführten Verbindungen sind stabile, hydrolysebeständige, farblose Flüssigkeiten.

Beschreibung der Versuche

Die Ausgangsverbindungen SCF₂⁵⁾, SCFCl⁶⁾, CF₃SC(S)Cl und CF₃SCCl₂SCl⁷⁾, CF₃SCl⁸⁾ und (CF₃)₂CClSCl⁹⁾ wurden nach bekannten Methoden dargestellt.

 $CF_3SC(S)F$ wurde, im Gegensatz zu der bereits bekannten Methode²⁾, nach

 $2 S = CFCl + Hg(SCF_3)_2 \longrightarrow 2 S = CF - SCF_3 + HgCl_2$

dargestellt:

5.34 g (27.1 mMol) S = CFCl und 8.96 g (22.2 mMol) $Hg(SCF_3)_2$ werden in einer abgeschmolzenen Glasbombe $1^{1/2}$ Stdn. bei Raumtemp. gerührt. Die flüchtigen Bestandteile werden i. Vak. abgezogen und destillativ getrennt. Es resultieren 6.97 g $CF_3SC(S)F(95.6\%)$.

IR-Spektren (Tab. 3) der dargestellten flüssigen Verbindungen wurden in Kapillarschichten mit einem Perkin-Elmer-Gitterspektrophotometer 125 im NaCl- und KBr-Bereich aufgenommen.

¹³C- und ¹⁹F-Kernresonanzspektren wurden mit einem Bruker 60 MHz-Spektrometer mit einer Arbeitsfrequenz von 56.4 MHz für ¹⁹F bzw. 15.02 MHz für ¹³C gemessen.

Die chemischen Verschiebungen beziehen sich auf $CFCl_3$ bei Fluor bzw. CS_2 bei Kohlenstoff als inneren Standard, wobei Verschiebungen nach größeren Feldstärken als positiv genommen werden. Zur Stabilisierung des Magnetfeldes wurde die ¹⁹F-Resonanz von C₆F₆ bzw. die ¹H-Resonanz von C₆H₆ als Referenz verwendet.

In Tab. 4 werden Einwaagen, Ausbeuten, Reaktionsbedingungen, Analysen und IR-Absorptionen angegeben. Die Umsetzungen erfolgten nach der Methode in I. c. ²).

- ⁵⁾ W. J. Middleton, E. G. Howard und W. H. Sharkey, J. Amer. chem. Soc. 83, 2589 (1961).
- N. N. Yarovenko und A. S. Vasil'eva, J. allg. Chem. (russ.) 1959, 3792; engl. Übersetzung: J. Gen. Chem. USSR 29, 3754 (1959).
- 7) A. Haas und W. Klug, unveröffentlichte Ergebnisse.
- 8) C. W. Tullock und D. D. Coffman, J. org. Chemistry 25, 2016 (1966).
- 9) W. J. Middleton und W. H. Sharkey, J. org. Chemistry 30, 1384 (1965).

[411/71]